Supervised Machine Learning

Supervised Machine Learning

Samuel Berestizhevsky / Tanya Kolosova

214,24 €
IVA incluido
Disponible
Editorial:
Taylor & Francis Ltd
Año de edición:
2020
ISBN:
9780367277321
214,24 €
IVA incluido
Disponible
Añadir a favoritos

AI framework intended to solve a problem of bias-variance tradeoff for supervised learning methods in real-life applications. It comprises of bootstrapping to create multiple training and testing data sets, design and analysis of statistical experiments and optimal hyper-parameters for ML methods.

Artículos relacionados

  • AI and Deep Learning Fundamentals
    BalaAnand Muthu / Jayanthi S / Sivaparthipan C. B.
    Welcome to the world of AI and Deep Learning! This book is a culmination of years of research, innovation, and practical insights into the fascinating realms of artificial intelligence and deep learning. In this rapidly evolving landscape, the convergence of neuroscience, mathematics, and computer science has sparked a revolution, redefining how machines perceive, learn, and in...
    Disponible

    47,00 €

  • IoT Application of Machine Learning and Deep Learning
    Dhiliphan Rajkumar T / Jeyaranjani J / Sathesh Kumar K
    The fusion of the Internet of Things (IoT) with the prowess of Machine Learning and Deep Learning has ignited a revolution in the realm of technology. 'IoT Application of Machine Learning and Deep Learning' is a comprehensive journey into this transformative synergy, designed to illuminate the convergence of these cutting-edge domains. This book aims to be a guiding light for e...
    Disponible

    43,31 €

  • Artificial Intelligence
    This book deals with the advancements made in the verticals of design approach using emerging technologies in artificial intelligence. It intends to deal with incorporating use cases, industry studies and research papers related to application of computer technique in the both the industry verticals. ...
    Disponible

    267,78 €

  • Algorithmic Information Theory
    Gregory J. Chaitin / Gregory JChaitin
    ...
    Disponible

    84,56 €

  • Bounded Queries in Recursion Theory
    G. Martin / W. Gasarch / William I. Gasarch
    One of the major concerns of theoretical computer science is the classifi­ cation of problems in terms of how hard they are. The natural measure of difficulty of a function is the amount of time needed to compute it (as a function of the length of the input). Other resources, such as space, have also been considered. In recursion theory, by contrast, ...
    Disponible

    132,15 €

  • Call-By-Push-Value
    P.B. Levy
    Call-by-push-value is a programming language paradigm that, surprisingly, breaks down the call-by-value and call-by-name paradigms into simple primitives. This monograph, written for graduate students and researchers, exposes the call-by-push-value structure underlying a remarkable range of semantics, including operational semantics, domains, possible...
    Disponible

    242,73 €

Otros libros del autor

  • Supervised Machine Learning
    Samuel Berestizhevsky / Tanya Kolosova
    AI framework intended to solve a problem of bias-variance tradeoff for supervised learning methods in real-life applications. It comprises of bootstrapping to create multiple training and testing data sets, design and analysis of statistical experiments and optimal hyper-parameters for ML methods. ...
    Disponible

    83,03 €