Foundations of Deep Learning

Foundations of Deep Learning

Dacheng Tao / Fengxiang He

208,74 €
IVA incluido
Disponible
Editorial:
Springer Nature B.V.
Año de edición:
2025
Materia
Probabilidad y estadística
ISBN:
9789811682322
208,74 €
IVA incluido
Disponible
Añadir a favoritos

Deep learning has significantly reshaped a variety of technologies, such as image processing, natural language processing, and audio processing. The excellent generalizability of deep learning is like a 'cloud' to conventional complexity-based learning theory: the over-parameterization of deep learning makes almost all existing tools vacuous. This irreconciliation considerably undermines the confidence of deploying deep learning to security-critical areas, including autonomous vehicles and medical diagnosis, where small algorithmic mistakes can lead to fatal disasters. This book seeks to explaining the excellent generalizability, including generalization analysis via the size-independent complexity measures, the role of optimization in understanding the generalizability, and the relationship between generalizability and ethical/security issues. The efforts to understand the excellent generalizability are following two major paths: (1) developing size-independent complexity measures, which can evaluate the 'effective' hypothesis complexity that can be learned, instead of the whole hypothesis space; and (2) modelling the learned hypothesis through stochastic gradient methods, the dominant optimizers in deep learning, via stochastic differential functions and the geometry of the associated loss functions. Related works discover that over-parameterization surprisingly bring many good properties to the loss functions. Rising concerns of deep learning are seen on the ethical and security issues, including privacy preservation and adversarial robustness. Related works also reveal an interplay between them and generalizability: a good generalizability usually means a good privacy-preserving ability; and more robust algorithms might have a worse generalizability. We expect readers can have a big picture of the current knowledge in deep learning theory, understand how the deep learning theory can guide new algorithm designing, and identify future research directions. Readers need knowledge of calculus, linear algebra, probability, statistics, and statistical learning theory.

Artículos relacionados

  • ENGINEERING UNCERTAINTY AND RISK ANALYSIS
    Sergio E. Serrano
    An integrated coverage of probability, statistics, Monte Carlo simulation, inferential statistics, design of experiments, systems reliability, fitting random data to models, analysis of variance, stochastic processes, and stochastic differential equations for engineers and scientists. The author for first time presents an introduction to the broad field of applied engineering u...
    Disponible

    134,56 €

  • UNDERSTANDING AND CALCULATING THE ODDS
    Catalin Barboianu
    Man’s daily life is full of decisional situations. Whether we have math skills or not, we frequently estimate and compare probabilities, sometimes without realizing it, especially when making decisions. But probabilities are not just simple numbers attached objectively or subjectively to events, as they perhaps look, and their calculus and usage is highly predisposed to qualita...
    Disponible

    31,61 €

  • Random Graphs and Complex Networks
    Remco van der Hofstad
    ...
    Disponible

    112,33 €

  • Steuerung der Lohnsumme im malischen KMU-Kontext
    Siaka Samaké
    Dieses Buch ist das Ergebnis einer Studie, in die malische KMU einbezogen wurden. Die Studie ist eine Reaktion auf die zahlreichen Stereotypen, die auf einen Mangel an Managementinstrumenten in afrikanischen KMU hindeuten. In der Tat neigen einige Analysten dazu, eine starke Präferenz der KMU-Führungskräfte für ein informelles (intuitives) Management zu behaupten. Andere behaup...
  • Payroll management for Malian SMEs
    Siaka Samaké
    This book is the fruit of a study involving Malian SMEs. It is the result of numerous stereotypes indicating that African SMEs are lacking in the use of management tools. Indeed, some analysts tend to support a loyal preference among SME managers for informal (intuitive) management. Others assert the presence of a mixed management style, i.e., straddling the line between inform...
  • Управление фондом заработной платы в условиях малийского МСП
    Сиака Самаке
    Эта книга - результат исследования, проведенного среди малых и средних предприятий Мали. Она является результатом многочисленных стереотипов, указывающих на то, что африканские МСП недостаточно используют инструменты управления. Действительно, некоторые аналитики склоняются к тому, что руководители МСП предпочитают неформальное (интуитивное) управление. Другие утверждают наличи...